
Lightning Talks

Stefan Keller

From Code to DB: How to make
Pythons and Elephants dance together!

From Code to Database Queries:

How to Make Pythons and Elephants

Dance Together

Institute for Software, FH OST Campus Rapperswil, ost.ch/ifs

Slides license is Creative Commons

Lightning Talk

Prof. Stefan Keller

17.+18 October 2024 Swiss Python Summit 2024 Rapperswil | Lightning Talk | Stefan Keller2

From Code to Database Queries: How to Make Pythons and Elephants Dance Together

17.+18 October 2024 Swiss Python Summit 2024 Rapperswil | Lightning Talk | Stefan Keller3

Introduction

• Connecting Python applications to databases like PostgreSQL

• is a common yet complex task,

• given the power of modern SQL

• and the choice of existing libraries.

• This talk evaluates top 7 Python software libraries

• that make it easy to connect Python to databases like PostgreSQL,

• using 7 criteria such as lightweightness, Pythonic style, type-safety, SQL-like query building, result

handling, SQL dialect support (especially, but not only PostgreSQL), Pandas integration.

• (Not considered: code synchronization and schema evolution support.

From Code to Database Queries: How to Make Pythons and Elephants Dance Together

17.+18 October 2024 Swiss Python Summit 2024 Rapperswil | Lightning Talk | Stefan Keller4

The top 7 Python software libraries

From Code to Database Queries: How to Make Pythons and Elephants Dance Together

• SQLAlchemy Core (requires psycog2 for PG)

• GitHub stars: ~7,000+. First released in 2005

• A widely-used SQL toolkit and Object-Relational
Mapper (ORM) that provides full control over SQL
expressions and database management.

• PyPika (complements psycog2 for PG)

• GitHub stars: ~2,200. Released in 2017

• PyPika is a pure SQL query builder focused on
providing expressive query generation.

• Records (requires psycog2 for PG)

• GitHub stars: ~3,000. Released in 2016

• A simple wrapper for making database queries,
emphasizing straightforward execution and
fetching of results without needing an ORM.

• Pony ORM (requires psycog2 for PG)

• GitHub stars: ~3,500. Released in 2009

• An ORM that allows Pythonic syntax for db queries, including
support for native Python generators to simplify query logic.

• Databases (with SQLAlchemy; can use psycog2)

• GitHub stars: ~4,400 . Released in 2018

• An asynchronous database library built to work seamlessly
with SQLAlchemy, widely used in async Python applications.

• Peewee (requires psycog2 for PG)

• GitHub stars: ~10,000. Released in 2010

• A small, lightweight ORM known for its simplicity and
expressiveness while offering many advanced ORM features.

• Tortoise ORM (requires asyncpg for PG)

• GitHub stars: ~7,500. Released in 2018.

• A fully asynchronous ORM inspired by Django, designed for
compatibility with async frameworks like FastAPI.

17.+18 October 2024 Swiss Python Summit 2024 Rapperswil | Lightning Talk | Stefan Keller5

Comparison

From Code to Database Queries: How to Make Pythons and Elephants Dance Together

Feature
SQLAlchemy

Core
PyPika Records Pony ORM Databases Peewee Tortoise ORM

Lightweightness Moderate High High Moderate Moderate High Moderate

Pythonic Style High High High High High High High

Typing Support Partial Partial No Yes Yes Partial Yes (full support)

Query Building Yes Yes No

Yes (via Python

comprehensions) Yes (via Core) Yes (via models) Yes (via models)

Result Handling `ResultProxy`

N/A (query

only) `RecordCollection` `Entity` objects Async Rows `Model` instances `Model` instances

SQL Dialect

Support

Multiple

(PostgreSQL)

Multiple

(PostgreSQL)

Multiple

(PostgreSQL)

Multiple

(PostgreSQL,

MySQL, SQLite,

Oracle)

Multiple

(PostgreSQL)

Multiple

(PostgreSQL,

MySQL, SQLite)

Multiple

(PostgreSQL,

MySQL, SQLite)

Pandas

Integration Good Limited Good Limited Good

Good (using

`.dicts()` or

`.tuples()`)

Good (requires

conversion)

17.+18 October 2024 Swiss Python Summit 2024 Rapperswil | Lightning Talk | Stefan Keller6

Summary Ranking by Feature

From Code to Database Queries: How to Make Pythons and Elephants Dance Together

Feature 1st Place 2nd Place 3rd Place 4th Place 5th Place 6th Place 7th Place

Lightweightness PyPika Records Peewee

Tortoise

ORM Databases

SQLAlchemy

Core Pony ORM

Pythonic Style PyPika Pony ORM Databases Peewee Records Tortoise ORM

SQLAlchemy

Core

Typing Support Tortoise ORM Pony ORM Databases Peewee PyPika

SQLAlchemy

Core Records

Query Building

SQLAlchemy

Core PyPika Pony ORM

Tortoise

ORM Peewee Databases Records

Result Handling Records Databases Peewee

Tortoise

ORM

SQLAlchemy

Core Pony ORM PyPika

SQL Dialect

Support

SQLAlchemy

Core Pony ORM Peewee Databases Tortoise ORM PyPika Records

Pandas

Integration Records

SQLAlchemy

Core Databases Peewee Tortoise ORM PyPika Pony ORM

17.+18 October 2024 Swiss Python Summit 2024 Rapperswil | Lightning Talk | Stefan Keller7

Overall Ranking

From Code to Database Queries: How to Make Pythons and Elephants Dance Together

Library Strengths Weaknesses

1 SQLAlchemy

Core

Comprehensive query building, excellent SQL dialect support, and

good Pandas integration. Supports schema evolution with Alembic.

Moderate in terms of lightweightness; typing support is

only partial.

2 PyPika Extremely lightweight, highly Pythonic, with a fluent, readable

interface for query building.

Lacks direct result handling and relies on adapters for

executing queries. Does not support schema evolution.

3 Records Simple to use, great for result handling, and has strong integration

with Pandas.

Limited to executing raw SQL queries; no typing or

query-building. Does not support schema evolution.

4 Pony ORM Pythonic style and query building using Python comprehensions;

extensive SQL dialect support. Supports built-in schema evolution.

Moderate in terms of lightweightness and lacks Pandas

integration.

5 Databases Asynchronous support, supports type annotations, and integrates

SQLAlchemy Core for query building and for schema evolution.

Requires handling async results for Pandas integration,

and it is not as lightweight compared to others.

6 Peewee Lightweight and Pythonic with model-based query construction;

moderate Pandas integration. Supports built-in schema evolution.

Lacks full typing support and is less comprehensive in

terms of query building compared to SQLAlchemy Core.

7 Tortoise ORM Full type annotation support, async capabilities, and model-based

query building. Supports built-in schema evolution.

Limited Pandas integration; not as lightweight as some

other options.

17.+18 October 2024 Swiss Python Summit 2024 Rapperswil | Lightning Talk | Stefan Keller8

SQLAlchemy Core

From Code to Database Queries: How to Make Pythons and Elephants Dance Together

Define the 'author' table structure (matches your PostgreSQL table)

author_table = Table('author', metadata,

Column('id', Integer, primary_key=True),

Column('first_name', String(255)),

Column('last_name', String(255))

)

Create a connection to the database

with engine.connect() as connection:

Create a select query to fetch all rows from the 'author' table

query = select([author_table]).where(author_table.c.last_name == 'Werner')

Execute the query

result = connection.execute(query)

Fetch and print all results

authors = result.fetchall()

for author in authors:

print(f"ID: {author.id}, First Name: {author.first_name}, Last Name: {author.last_name}")

17.+18 October 2024 Swiss Python Summit 2024 Rapperswil | Lightning Talk | Stefan Keller9

PyPika

From Code to Database Queries: How to Make Pythons and Elephants Dance Together

Define the 'author' table using PyPika

author = Table('author')

Create a query to select all rows from the 'author' table

query = Query.from_(Author).select('*').where(Author.last_name == 'Werner')

Execute the query

cursor.execute(sql_query)

Fetch and print all results

authors = cursor.fetchall()

for author in authors:

print(f"ID: {author[0]}, First Name: {author[1]}, Last Name: {author[2]}")

17.+18 October 2024 Swiss Python Summit 2024 Rapperswil | Lightning Talk | Stefan Keller10

Records

From Code to Database Queries: How to Make Pythons and Elephants Dance Together

SQL query to select all authors with last name 'Werner'

query = "SELECT * FROM author WHERE last_name = :last_name"

Execute the query and pass 'Werner' as the parameter for 'last_name'

rows = db.query(query, last_name='Werner')

Iterate through the results and print each author's details

for row in rows:

print(f"ID: {row['id']}, First Name: {row['first_name']},

Last Name: {row['last_name']}")

17.+18 October 2024 Swiss Python Summit 2024 Rapperswil | Lightning Talk | Stefan Keller11

What’s your experience?

Feedback to me, stefan.keller@ost.ch

17.+18 October 2024 Swiss Python Summit 2024 Rapperswil | Lightning Talk | Stefan Keller12

Pony ORM

From Code to Database Queries: How to Make Pythons and Elephants Dance Together

Define the Author entity corresponding to the 'author' table

class Author(db.Entity):

id = PrimaryKey(int, auto=True)

first_name = Required(str)

last_name = Required(str)

Use db_session to manage transactions

@db_session

Query to fetch all authors with last_name 'Werner'

def get_authors_by_last_name(last_name):

authors = select(a for a in Author if a.last_name == last_name)[:]

for author in authors:

print(f"ID: {author.id}, First Name: {author.first_name},
Last Name: {author.last_name}")

Call the function

get_authors_by_last_name('Werner')

17.+18 October 2024 Swiss Python Summit 2024 Rapperswil | Lightning Talk | Stefan Keller13

Databases

From Code to Database Queries: How to Make Pythons and Elephants Dance Together

Function to connect to the database

async def connect_to_db():

await database.connect()

Function to query all authors

async def get_authors_with_last_name(last_name):

query = "SELECT id, first_name, last_name FROM author WHERE last_name = last_name“ # raw SQL style

#query = author_table.select().where(author_table.c.last_name == last_name) # SQLAlchemy style

results = await database.fetch_all(query=query)

for author in results:

print(f"ID: {author['id']}, First Name: {author['first_name']}, Last Name: {author['last_name']}")

Main asynchronous function to connect, query (and disconnect)

async def main():

await connect_to_db() # Connect to the database

await get_authors_with_last_name('Werner')() # Fetch and display all authors with last name Werner

asyncio.run(main())

17.+18 October 2024 Swiss Python Summit 2024 Rapperswil | Lightning Talk | Stefan Keller14

Peewee

From Code to Database Queries: How to Make Pythons and Elephants Dance Together

Define the Author model corresponding to the 'author' table

class Author(Model):

id = IntegerField(primary_key=True)

first_name = CharField(max_length=255)

last_name = CharField(max_length=255)

class Meta:

database = db # This model uses the 'library' database

Query the database to get all authors

def get_all_authors():

authors = Author.select().where(Author.last_name == 'Werner')

for author in authors:

print(f"ID: {author.id}, First Name: {author.first_name}, Last Name: {author.last_name}")

Call the function to fetch and display all authors

get_all_authors()

17.+18 October 2024 Swiss Python Summit 2024 Rapperswil | Lightning Talk | Stefan Keller15

Tortoise ORM

From Code to Database Queries: How to Make Pythons and Elephants Dance Together

Define the Author model corresponding to the 'author' table

class Author(models.Model):

id = fields.IntField(pk=True)

first_name = fields.CharField(max_length=255)

last_name = fields.CharField(max_length=255)

class Meta:

table = "author" # This model maps to the 'author' table

Function to query all authors with last_name "Werner"

async def get_authors_by_last_name(last_name: str):

authors = await Author.filter(last_name=last_name)

Iterate through the results and print each author's details

for author in authors:

print(f"ID: {author.id}, First Name: {author.first_name}, Last Name: {author.last_name}")

Main function to run the database operations

async def main():

await init() # Step 1: Connect to the database

await get_authors_by_last_name("Werner") # Query all authors

asyncio.run(main())

Hans Märki

Octoprobe, Testing with HIL

python-summit.ch, Hans Märki, v2024-10-16a

New FancyCam

● Your task:

○ Write driver in C for micropython firmware

○ On github, accept PullRequests from community

○ Test matrix:

■ 2 FancyCam HW

■ 5 CPU boards

■ 2 Micropython versions

■ => 20 combinations to test!

python-summit.ch, Hans Märki, v2024-10-16a

Testing HIL (HW in the loop)

python-summit.ch, Hans Märki, v2024-10-16a

Step by step

● 7 Tentacles: 2 FancyCam, 5 CPU

● test server: install octoprobe

● write pytests

● self hosted runner within github

● github action which triggers on PR

Daniel Szoke

Intro to Monkey-Patching

Intro to
Monkey-patching
Daniel Szoke

What is Monkey-patching? 🐒
“Monkey patching in Python refers to dynamically modifying or extending a
class or module at runtime, allowing you to change its behavior.”

- ChatGPT

What is Monkey-patching? 🐒
“Monkey patching in Python refers to dynamically modifying or extending a
class or module at runtime, allowing you to change its behavior.”

- ChatGPT

Let’s see an example of how to monkeypatch to capture exceptions!

Imagine a server framework…

import my_server_framework

@my_server_framework.route('/')

def index():

 1 / 0 # Uh, oh!

 return 'Hello, World!'

Somewhere in the server framework code

Somewhere in my_server_framework

handlers: dict[str, Callable] = {}

@my_server_framework.route registers handlers in dict

def request_handler(path):
 handler = handlers[path]
 handler() # <---- The function registered to the path

Now let’s patch in error SDK

error SDK
import my_server_framework .request_handler

def patch_request_handler ():
 old_request_handler = my_server_framework .request_handler

 def wrapper(*args, **kwargs):
 try:
 return old_request_handler(*args, **kwargs)
 except Exception as e:
 capture_exception(e)
 raise e

 my_server_framework .request_handler = wrapper # <---- 🐵

patch_request_handler ()

Yay! Error got captured :)

import my_server_framework
import error_sdk

error_sdk.init()

@my_server_framework.route('/')
def index():
 1 / 0 # Uh, oh!
 return 'Hello, World!'

Niklas Mertsch

Jython + Mypy

Jython with mypy

Who here likes Python?

Who uses type annotations?

Who uses static type checking?

Who has to interact with
Java systems?

Jython:
Python 2.7 interpreter

in Java

Jython with mypy

Jython with mypy

Jython with mypy

Java Packages

Type stubs

Type stubs

Type stubs

Testing with Mocks

Timon Erhart

Don’t use os.path

Don't use os.path !

Because since many years is a better way..

timon@python-summit.ch

timon.erhart@ost.ch

What is os.path ?

There is a better way!

use pathlib (standard library!)

object oriented

In [10]:

import os

path = os.getcwd()

path = os.path.join(path, "file.txt")

print(path)

with open(path, "w") as f: # touch path

 pass

os.rename(path, os.path.join(

 os.path.dirname(path),"file2.txt"))

path = os.path.join(os.path.dirname(path), "file2.txt")

print(path)

print(

 os.path.exists(path)

)

os.unlink(path) # remove file

/home/erti/LEHRE_repos/ploting-with-python-slides/file.txt

/home/erti/LEHRE_repos/ploting-with-python-slides/file2.txt

True

since 3.14 (2014)

Why people using it still?

Example

In [11]:

from pathlib import Path

path = Path() # os.getcwd()

path = path / "file.txt" # os.path.join

path.write_text("") # touch

print(

 path.exists()# os.path.exists

)

path = path.rename("file2.txt") # os.rename

path.unlink() # os.unlink

True

In [12]:

old

import glob

for f in glob.glob(os.path.join(os.getcwd(), "*.txt")):

 print(f, type(f)) # string

new

for file in Path().glob("*.txt"):

 print(f, type(f))

/home/erti/LEHRE_repos/ploting-with-python-slides/requirements.txt <class 'str'>

/home/erti/LEHRE_repos/ploting-with-python-slides/requirements.txt <class 'str'>

Further reads

The official doks

come with an nice comparison with os.path (##corresponding-tools)

Python 3 Module of the Week

https://docs.python.org/3/library/pathlib.html

https://pymotw.com/3/pathlib/index.html

Radomir Dopieralski

Robots and MicroPython

Robots and MicroPython

Radomir Dopieralski
@deshipu@fosstodon.org

Thank you!

https://deshipu.art/

Dave Halter

Mypy rewritten in Rust

 AutocompletionJedi

– Twitter/GitHub: zubanls.com @ZubanLS

2022

Mypy in Rust

• Passing 20% of Mypy's test suite
• Tests run 650x faster than Mypy

2024

Mypy in Rust

• Passing 20% 90% of Mypy's relevant tests
• Tests run 650x 230x faster than Mypy

Goal: ZubanLS

• A Python Language Server written in Rust
•

•

• Twitter/GitHub:

zubanls.com
info@zubanls.com

@ZubanLS

zmypy

• 0.9s vs 40s when type checking Mypy (no cache)
• Single Thread (optimizable)
• Supports most mypy flags and features
• Reducing false positives

zmypy foobar --strict --warn-unreachable

Outlook

• Probably not Open Source (But fallback to Mypy)
• zmypy is available very soon
• Language Server hopefully in 2025
• I am very interested to have a discussion

Questions?

•

•

• Twitter/GitHub:

zubanls.com
info@zubanls.com

@ZubanLS

