Voice Control in Action

A Python-Based Approach for Operating a Quadrupedal Robot

Robin Ehrensperger

robin.ehrensperger@ost.ch

September 21, 2023

The Robot

- Weight: 32kg
- Payload Capacity: 14kg
- Runtime: 90min
- Max Speed: 5.8km/h
- Slopes: ±30deg

Add-Ons

- Vision Tower
- Spray Add-on
- Drill Add-on

Spot Python SDK

Requirements:

- Linux Ubuntu 18.04 LTS or newer
- Python 3.6, 3.7 or 3.8

How to Control the Robot

How to Issue Commands

Build the command

1 orient_command = RobotCommandBuilder.synchro_stand_command(

2 footprint_R_body=orientation, body_height=height

Issue the command

```
1 command_id = client.command_client().robot_command(
```

```
2 lease=None, command=orient_command, end_time_secs=end_time
```

3

3

How to Issue Commands

Check the command status

```
while (current_time - start_time) < end_time:</pre>
```

```
status = robot.getMobilityFeedback(command_id)
```

```
3 if status == EXECUTING:
```

```
continue
```

```
5 elif status == AT_GOAL:
```

```
6 return 0
```

4

```
7 raise TimeoutError
```

New Approach

New Approach

JSON Commands					
1	{				
2		"type": "",	// Command Type		
3		"prio": "",	// NORMAL, NEXT or INTERRUPTING		
4			// Command-specific Keys		
5	}				

Parts of the Speech Recognition

Speech to Text Models

Cloud-based	Local
Google STT	Mozilla DeepSpeech
OpenAl STT	Vosk
Microsoft STT	

Speech to Text Models

Model	Word Error Rate (WER)
Mozilla DeepSpeech	24.7
Vosk	4.3

- *S* Substituted Words
 - I Inserted Words
- **D** Deleted Words
- n_W Total Amount of Words in the Text

 $WER = \frac{S+I+D}{I}$

 n_{W}

Text to Command Methods

Keyword Matching

DNN Approach

Keyword Matching

Pros:	Cons:
Fast	Error Prone
Simple to Implement	Conjugated Words?

DNN Approach

Pros:	Cons:
Can detect the Meaning	Computational Overhead
Handles Misspelling	Training Data required
Better Generalization	

Best Method?

After some Testing:

- Few Commands and even fewer Ways to issue them
- Keyword Matching seems Sufficient

After some further testing:

- Keyword Matching not Sufficient
- Keyword Engineering too complex

Best Method?

Use more stable Keyword Matching Algorithm:

TF-IDF (Term Frequency - Inverse Document Frequency)

Pros:	Cons:
Fast enough	Phonetic Similarity?
Few Key-Sentences needed	

Outlook: Work on Phonetic Similarity

From Text to Information

Walk forward two meters, one meter to the left and look left ten degrees

From Word to Number

There's a Library for that: word2number

We can

- Translate Speech to Sentences using local Models
- Extract Commands from Sentences using TF-IDF
- Extract Information about the Command
- Issue Commands using JSON files

Demonstration

Questions

robin.ehrensperger@ost.ch