
Pavel Sulimov, ZHAW

Furio Valerio Sordini, Implenia

Swiss Python Summit

21 September 2023

ASYNCHRONOUS MULTIPROCESS
LARGE MODEL TRAINING ON 
PYTORCH FOR SYNTHETIC CITIES 
GENERATION



© Implenia

ABOUT SYNTHETIC CITIES

 The existing methods based on 

manual CAD drafting are inefficient 

and expensive: the number of 

possible drafts is limited by the 

skills and labor intensity of the 

expert.

 Using the dataset of cadastral maps 

of cantons of Switzerland, we 

suggest the model architecture that 

considers the city's morphology 

defined set of homogeneous 

entities: roads, buildings, and other 

areas.



© Implenia

ABOUT THE SELECTED MODEL ARCHITECTURE

General Adversarial Networks

The solution is based on General Adversarial 

Networks, a method where two deep learning model 

compete against each other. 

The first model, the generator, receives random noise 

as input and passes it through a series of hidden layer 

to generate an output, in this case a simulation of a 

urban cadastral plan. 

The second network, the discriminators, receives both 

real images and simulations from the generator and 

aims to distinguish them. 

Generator architecture 

Discriminator architecture 



© Implenia

TRAINING A DEEP NEURAL NETWORK

1) Load the full model on the processor

2) Repeat the following process over more steps 

(epochs)

A. Divide the dataset in batches (here group of 

images)

B. In the forward pass the data points are 

passed through the model to train the 

discriminator. Calculate the loss function. 

C. In the backward pass the gradient of the loss 

with respect to each parameter is calculated.

D. The model parameters are updated.

Forward step

Source: Understanding Backpropagation Algorithm

Backward propagation

Source: Understanding Backpropagation Algorithm

https://towardsdatascience.com/understanding-backpropagation-algorithm-7bb3aa2f95fd
https://towardsdatascience.com/understanding-backpropagation-algorithm-7bb3aa2f95fd


© Implenia

SO WHAT IS THE PROBLEM?

Some complex deep learning models (like 

ours) consist of millions and even billions of 

parameters. Therefore:

 The processors do not always satisfy the 

capacity requirements and can hardly store 

the entire model. 

 Training in a single thread is extremely 

inefficient



© Implenia

SO WHAT IS THE PROBLEM?

Some complex deep learning models (like 

ours) consist of millions and even billions of 

parameters. Therefore:

 The processors do not always satisfy the 

capacity requirements and can hardly store 

the entire model. 

 Training in a single thread is extremely 

inefficient

Smells like a need for parallelisation? Let’s 

use GPUs then!

 When given a task, a GPU will divide it into 

thousands of smaller subtasks and process 

them concurrently, instead of serially. E.g., 

in graphics rendering, GPUs handle 

complex mathematical and geometric 

calculations to create realistic visual effects 

and imagery. Instructions must be carried 

out simultaneously to draw and redraw 

images hundreds of times per second to 

create a smooth visual experience.

 GPUs are optimized for training deep 

learning models and can process multiple 

parallel tasks



© Implenia

DISTRIBUTED DATA PARALLEL

7

Data Distributed Parallel (DDP) acts on the training 

routine: divide data in random batches, forward pass, 

backward pass and model update.

The batches are distributed over the processors. 

Depending on the number of batches and processors, 

each processor can repeat the process over more 

batches. 

Each processors stores the entire model and passes 

the datapoints forward and backward. 

The AllReduce GPU operator collects all the 

gradients calculated over the different batches and 

sums them to obtain the full gradient. The full gradient 

is used to update the model.

In DDP each GPU need to store the entire model to 

perform the forward and the backward pass! 
Distributed Data Parallel 

Source: Distributed Data Parallel - PyTorch Documentation

https://pytorch.org/docs/stable/notes/ddp.html


© Implenia

DISTRIBUTED MODEL PARALLEL: VERTICAL CUT

8

Naive Model Parallelism consists in distributing the 

layers of the neural network over the GPUs. Each time 

the GPU performs a step, the data needs to be passed 

to the other GPU: only one GPU is active, the others 

are idle. 

Pipeline Parallelism (PP) partially solves the problem 

by chunking the batches into minibatches and 

artificially creating a pipeline. The most advanced APIs 

introduce also the concept of interleaved pipelines, 

where the idle time is further reduced by prioritizing 

the backward passes.

Naïve Distributed Model Parallel 

Source: Distributed data parallel and distributed model parallel in 

PyTorch, by Wei Yi, Towards Data Science

Pipeline Parallelism

Source: Model Parallelism (huggingface.co)

https://towardsdatascience.com/distributed-data-and-model-parallel-in-deep-learning-6dbb8d9c3540
https://huggingface.co/docs/transformers/v4.18.0/en/parallelism


© Implenia

DISTRIBUTED MODEL PARALLEL: HORIZONTAL CUT

9

Horizontal Model Cut

Source: Distributed data parallel and distributed model parallel in 

PyTorch, by Wei Yi, Towards Data Science

The model can be also distributed over the GPUs 

horizontally, separating each path instead of each 

layer as in the vertical cut. This process is also called 

Tensor Parallelism (TP). 

In the backward pass there are multiple routes from 

the model prediction to its inputs. The full gradient for 

a certain parameter needs to be consolidated over the 

different pass. The operation is done by the 

ReduceScatter operator: similar to the AllReduce

operator it collects and consolidates the results over 

more GPUs, but it also scatters the results in equal 

blocks among GPUs, depending on a rank index. 

https://towardsdatascience.com/distributed-data-and-model-parallel-in-deep-learning-6dbb8d9c3540


© Implenia

AND THERE ARE MANY MORE OPTIONS FOR RICH …

10

Zero Redundancy Optimizer (ZeRO)

It is like to usual data parallel, but instead of 

replicating the whole model on each GPU, 

parameters, gradients and optimizer states are 

sharded over all the GPUs. The whole tensors gets 

reconstructed in time for backward or forward passes; 

therefore the model does not need any update. It 

supports offloading techniques to compensate for 

limited GPU memory.

Fully Shared Data Parallel (FSDP)

FSDP Workflow

Source: Getting started with FSDP – PyTorch Tutorials

https://towardsdatascience.com/distributed-data-and-model-parallel-in-deep-learning-6dbb8d9c3540


© Implenia

WHAT CAN POOR PEOPLE DO? MULTIPROCESSING!

11

torch.multiprocessing is based on the 

multiprocessing (MP) module, available in native 

Python. 

This module allows to queue, pool, manage processes 

and exchange variables (put or get) among them.

 subprocess can be executed on GPU (!)

Source: Multiprocessing Best Practices – PyTorch

https://towardsdatascience.com/distributed-data-and-model-parallel-in-deep-learning-6dbb8d9c3540


© Implenia

RECOMMENDATIONS

12

ZeRO + 
Offload
CPU

Normal 
use

MP

PP
TP

DDP

Model fits the GPU YesNo

S
in

g
le

 G
P

U
M

u
lt
ip

le
 G

P
U

s



© Implenia

RESULTS

13

The generator model used has 32.2M parameters and 

can be stored on a single GPU: distributed model 

parallel is therefore not necessary.

Still, multiprocessing can meaningfully speed up the 

training process, even using a single multi-core GPU.

Here below the performances with and without 

multiprocessing:

Training with Multiprocessing ~ 9.5 hrs

Traditional Training ~ 13 hrs



© Implenia

JOCKER: MOJO

14



© Implenia

THANK YOU FOR THE ATTENTION!

furiovalerio.sordini@implenia.com pavel.sulimov@zhaw.ch


