
Kivy:
Cross-platform App Development for Pythonistas

Build and distribute beautiful Python cross-platform GUI
apps with ease.

$ whoami

#kivy-team

#the-real-kivy-team-part-1

code contributors
475 + 219 + 66 + 103 + 70 …(and counting)

!

#the-real-kivy-team-part-2

Sponsors and
Supporters 195

(and counting)

!

$ history 0 | grep kivy

Almost 13 years ago. Wow!

PyMT (Python Multitouch)

(https://github.com/tito/pymt)

But everything started from a project on which tito was already working on at that time…

Created in 2007

16 years ago!

I guess we can consider the commit
1f2fb6eb41651e4d10cb51c24a24af66be37606d as the Kivy birthday.

Which is dated 2010-11-03

$ history 0 | grep kivy

“Kivy is made for today and tomorrow. Novel input methods
such as Multi-Touch have become increasingly important. We

created Kivy from scratch, specifically for this kind of
interaction …”

Well, that statement has been added a quite long time ago to our docs, and still look

fresh, even if the most important things may have changed meanwhile, as the

framework evolved (and is evolving) with the tech.

But ... why we should
choose Kivy for App
Development?

Ok …
Kivy looks like a robust and long-maintained project.

And how I can persuade my
coworkers (or myself) to drop
non-pythonic ways to develop

mobile and desktop apps?

Kivy is cross-platform

Write once.
Deploy
anywhere.

(Almost)

iOS, Android, macOS, Linux, Windows

Less code to maintain!

And that really
works great on
small teams.

Trust me.

Great for small teams and

freelancers!

Kivy is fast

Time-critical functionalities are implemented in Cython.

Intelligent algorithms to minimize costly operations

GPU Accellerated (when it makes sense)

Production ready!

Kivy is business friendly

Kivy is released under the MIT License and is 100% free to
use and is professionally developed, backed and maintained.

Companies and individual are using Kivy for their
projects everyday.

Completely FREE and NO HIDDEN COSTS! *
* Just consider making source code contributions as a thank you to the community!

Kivy makes Pythonistas Happier

As a Pythonistas, we’re open-minded, so we’re probably good to switch

to another language to develop (mobile or desktop) GUI APPs.

But, if we can just avoid that …

! ➡ !
“An happier software developer is less prone to generate bugs”

TAKE A FULL
BREATHE …

… AND LET’S
DISCOVER THE
KIVY ECOSYSTEM *

* SAFELY

Kivy has a complete toolset

“kivy/kivy is just the visible part of the iceberg”
Mirko, 2022-08-10 22:22, Rotterdam

The toolset: Overview

kivy/pyobjus

kivy/pyjnius

kivy/plyer

kivy/kivy-ios

kivy/python-for-android

kivy/buildozer

(An overview of the most important parts of the Kivy ecosystem, you can find and discover other nice projects at https://www.github.com/kivy)

”B
E

IN
G

 C
R

O
S

S
-P

L
A

T
F

O
R

M
”

P
A

C
K

A
G

IN
G

The toolset: kivy/pyjnius

A Python module to access Java classes as Python

classes using the Java Native Interface (JNI).

from android.runnable import run_on_ui_thread
from jnius import autoclass

@run_on_ui_thread
def show_toast(self):

Load the necessary Android (and Java) classes
Toast = autoclass('android.widget.Toast')
String = autoclass('java.lang.String')

Get the current Android context
current_context = autoclass('org.kivy.android.PythonActivity').mActivity

Create a Java string and pass it to the Toast
msg = String("Hello from Python!")

Create a Toast message
toast = Toast.makeText(current_context, msg, Toast.LENGTH_SHORT)
Display the Toast message
toast.show()

Access Android APIs and third-party Android libraries from Python !
Access Java classes on your desktop environment!

The toolset: kivy/pyobjus

Python module for accessing Objective-C classes as

Python classes using Objective-C runtime reflection.

from pyobjus import autoclass, objc_str
from pyobjus.dylib_manager import load_framework, INCLUDE

load AppKit framework into pyojbus
load_framework(INCLUDE.AppKit)

get NSAlert class
NSAlert = autoclass('NSAlert')

create an NSAlert object, and show it.
alert = NSAlert.alloc().init()
alert.setMessageText_(objc_str('Hello world!'))
alert.runModal()

Access native and third-party APIs on macOS and iOS from Python !

The toolset: kivy/plyer

Plyer is a platform-independent API to use features commonly

found on various platforms, notably mobile ones, in Python.

Accelerometer - Audio recording – Barometer – Battery – Bluetooth – Brightness – Call –

Camera – Compass - CPU count – Devicename – Email – Flash – GPS – TTS, and so on …
(full list with OS compatibility on github.com/kivy/plyer)

Leverages `pyjnius` and `pyobjus` when needed.

import plyer

The most basic and exhaustive example (in the world)
plyer.tts.speak("Hello World")

Pythonic alternative to access platform-specific features!

The toolset:
kivy/python-for-android

A packaging tool for Python apps on
Android.

You can create your own Python
distribution with the needed modules and
dependencies, and bundle it in an APK or

AAB along with your own code and assets.

So these tools are just copying my
dependencies and code into an artifact that can

run on Android or iOS?

Unfortunately is not that easy.
(for us)

The toolset:
kivy/kivy-ios

A packaging tool for Python apps on
iOS.

You can create your own Python
distribution with the needed modules and

dependencies, and bundle it in an APP
along with your own code and assets.

Why is not that easy to package a
Python mobile APP?

Whiteboard session.

(under the hood)

We need to package a Python interpreter that is able to run on Android or iOS

Non-plain python packages are not available on PyPi for Android or iOS

We need to start the Python interpreter

On iOS, we’re required to statically link everything on the main executable.

Not everything is available on iOS and Android (like subprocess)

Data scientists love libraries based on FORTRAN

No, Android doesn’t have apt-get

No, iOS doesn’t have brew

And many more …

How we managed
to fix it.

(We can do better, and how the whole Python community can help)

kivy/kivy-ios and kivy/python-for-android
How they works

(I’m not talking about installation and usage, that’s too easy.)

hostpython3
Runs on the dev machine

python3
Runs on the target device

bootstrap
(Android: SDL2, webview, service – iOS:

SDL2)

pip install –-isolated –prefix dist_dir/root/python3

(with proper env vars set)

Recipes
!"#

Android or iOS APP

YourApp
Your APP code and assets

Hey toolchain, I
need to build my
app which have
these dependencies

!

OK, let’s do that.

"

Is a python package?

A dependency graph is built, and then, for every
dependency …

Is plain-python ?

Python Packages
(`site-packages`)

libs
(openssl, sdl2, …)

YES

YES
NO NO

The toolset: kivy/buildozer
A tool for creating application packages easily.

(easily == without worrying about cli flags)

One single `buildozer.spec` file in your app directory, describing your
application requirements. buildozer will use that spec to create a

package for Android, iOS, macOS.

macOS: $ Partially supportedAndroid: % Supported iOS: $ ParBally supported

Windows: ❌ Help wanted Linux: ❌ Help wanted

(Uses kivy/python-for-android under the hood) (Uses Kivy.app pre-built ar;fact under the hood) (Uses kivy/kivy-ios under the hood)

(Alternative: PyInstaller as documented) (Alterna;ve: PyInstaller)

$ buildozer android debug deploy run
(Hey buildozer, please build an Android ar4fact in debug mode, deploy it on the device and run it)

A small brief about the current status:

kivy/kivy
The visible part of the iceberg:

(a brief introduction to)

Kivy architecture
Kivy abstracts basic tasks such as:
- Opening a window
- Displaying images
- Displaying text
- Playing audio
- Getting video feed from a camera.
... and so on

This makes the API both easy to use and easy to extend.

Most importantly, it allows us to use specific providers for the
respective scenarios in which your app is being run.

As an example, on macOS, Linux and Windows, there are
different native APIs for the different core tasks.

On every platform, Kivy chooses the best core provider to use, and you do not need to worry about it.

KVLang (Kivy Design Language)

The KV language (KVlang), allows the
developer to create the widget tree in a
declarative way and to bind widget
properties to each other or to callbacks
in a natural manner.

...
mylay = BoxLayout(size_hint=(1,.5), orientation="vertical")

salutation_lbl = Label(text="")

mylay.add_widget(salutation_lbl)

btn = Button(text="Say Hi",
on_release=salutation_lbl.text="Hi!")

mylay.add_widget(btn)

...

...
BoxLayout:

size_hint: 1, .5
orientation: 'vertical'
Label:

id: salutation_lbl
text: ""

Button:
text: "Say Hi!"
on_release: salutation_lbl.text = "Hi!"

...

❌

✅It allows for very fast prototypes and

agile changes to your UI.

It facilitates separating the logic of

your application and its User

Interface.

Properties
NumericProperty StringProperty ListProperty ObjectProperty BooleanProperty

BoundedNumericProperty OptionProperty

ReferenceListProperty

AliasProperty DictProperty

VariableListProperty ConfigParserProperty

ColorProperty

These properties implement the Observer pattern,
and to use them, you have to declare them at
class level.

Kivy Properties help you to:

• Easily manipulate widgets defined in the Kv
language

• Automatically observe any changes and and
act accordingly

• Check and validate values
• Optimize memory management

class MyClass(EventDispatcher):
click_count = NumericProperty(0)

def inc_click_count(self):
self.click_count += 1

def on_click_count(self, *kwargs):
print("Clicked!", self.click_count)

Each property by default providesan on_<propertyname> event that is calledwhenever the property’s state/value changes.

Clock

while True:
say_hi()
time.sleep(10)

from kivy.clock import Clock

def say_hi(dt):
print(f"Hi! @ {dt}")

say_hi_ev = Clock.schedule_interval(say_hi, 10)

say_hi_ev.cancel()

Clock.schedule_interval(my_callback, 0.5)

Clock.schedule_once(my_callback, 5)

Clock.schedule_once(my_callback)

call my_callback every 0.5 seconds

call my_callback in 5 seconds

call my_callback as soon as possible (usually next frame.)

event = Clock.create_trigger(my_callback)
event() # will run the callback once before the next frame Useful to schedule a function call in

the future, once or repeatedly at

specified intervals.

Widget: Events

A widget has 2 default types of events:

• Widget-defined event: e.g. an event is fired
when the Button is released or pressed.
(via dispatch)

• Property event: if your widget changes its
position or size, an event is fired. (As seen
in Kivy Properties)

class CustomButton(Button):
current_status = StringProperty("unknown")

def on_release(self, *args):
self.current_status = "released"

def on_press(self, *args):
self.current_status = "pressed"

def on_current_status(self, *args):
print("current_status: ", self.current_status)

Widget: Canvas

Each widget has a canvas, aka “A place to draw on”.
The canvas is a group of drawing instructions that
should be executed whenever there is a change to
the widget’s graphical representation.

canvas.before or canvas.after groups can
be used to separate instructions based on when you
want them to be executed.

You can add instructions either from Python code or
from the kv file.

TIP: If you add them via the kv file, the advantage is
that they are automatically updated when any Kivy
property they depend on changes. In Python, you need
to do this yourself.

...
BoxLayout:

canvas.before:
Color:

rgba: 1, 0, 0, 1
RoundedRectangle:

pos: self.pos
size: self.size
radius: dp(5),

canvas.after:
Color:

rgba: 0, 0, 1, .5
Ellipse:

size: self.size
pos: self.pos

Label:
text: "Hi!"
color: 1,1,1,1

...

built-in UI components

Accordion ActionBar Bubble Button Camera Carousel Checkbox

CodeInput ColorPicker DropDown EffectWidget FileChooser

GestureSurface Image Label ModalView Popup ProgressBar

ProgressBar RecycleView RstDocument Scatter ScreenManager

ScrollView Slider Spinner Splitter StencilView Switch

TabbedPanel TextInput ToggleButton TreeView Video VideoPlayer

VKeyboard Widget

AnchorLayout BoxLayout FloatLayout RelativeLayout GridLayout

PageLayout ScatterLayout StackLayout

“Roadmap” for a smooth cross-platform experience
(how to avoid painful mistakes)

Which dependencies I need?

Think. Test. Choose.

I really need all these deps?

Can I use plain-python
alternatives to non-plain-python
dependencies?

I could take an advantage by
using a platform-specific
implementation?

Test every dependency, on every
platform you want to support
(now and in future)

Test platform-specific
implementations

IMPORTANT: If you’re unconfortable with a choice you did, re-do the decision process.

If the test phase gone super-
smooth, why are you still here?

A recipe to build a non-plain python
dependency is not available?

Are you confortable to patch your
dependency and write a recipe? *

Anything you’re unconfortable with
and you want to change?

* Consider proposing your recipe and patches upstream

Kivy’s community-
mantained garden

Is full of flowers
https://github.com/kivy-garden

An organization for developers of Kivy widgets, add-ons
and related software.

Some examples:

• zbarcam: Real time Barcode and QR Code scanner using the camera. It's built on
top of Kivy and works with both pyzbar or zbarlight.

• mapview: A Kivy widget for displaying interactive maps. It has been designed
with lot of inspirations of Libchamplain and Leaflet.

• graph: The Graph widget is a widget for displaying plots. It supports drawing
multiple plot with different colors on the Graph. It also supports a title, ticks, labeled
ticks, grids and a log or linear representation on both the x and y axis,
independently.

Kivy provides the bricks.

Our community a
garden full of flowers.

But you can even do more.

You can create new widgets and customize
existing ones.

Even if Kivy comes with its own set of icons
and its UI theme, there’s no need to stick on it.

Some projects from our community:
https://kivy.org/gallery.html

(spoiler: Is easier than writing some CSS3.)

• ' Kivy 2.2.1 has been released on 2023-06-17 '

• Kivy-ios v2023.08.24 has been released and

supports Kivy 2.2.1

• python-for-android v2023.09.16 has been

released and supports Kivy 2.2.1

• Kivy 2.3.0 status (:

• Some PRs have already been merged!

• The brand new TextInput core provider

(currently a POC) is becoming a reality.

Some fresh news

The future.
Or, at least, some thoughts.

• Improve the documentation and guides).

• Involve (more) the community through meetups
and livestreams.

• Improve the support for non-latin languages (In
2.2.0 we now use harfbuzz to handle reshaping, but there’s still a
lot of work to do)

• Update the camera * implementation on both
Android and iOS.

• Together is better: Involve the whole Python
community making it aware of mobile platforms.

Python Swiss Summit (LIVE) special:

Need help to get your package ready for mobile platforms? Ping me IRL!

Want to talk about Kivy?
Feel free to ping me IRL to start chatting !

Thank You!
www.kivy.org chat.kivy.org @kivyframework

!"!

