
Lets Talk About GIL
@aktech

Who am I?

Loves everything which is free and open!

Loves everything which is free and open!
including Software

http://live.sympy.org/

Try in your browser

Student application deadline
March 27 16:00 UTC	

Process

an instance of a program running in a computer.

Thread

smallest sequence of programmed instructions

Thread

light weight and share memory.

Strength of Threads

Strength of Threads

shared state
“Everyone has everything”

- Raymond Hettinger

Weakness of Threads

shared state
“Everyone can access everything”

Weakness of Threads

shared state
“Everyone can access everything”

Weakness of Threads

Simultaneously!

 Multithreading

The ability of a central processing unit (CPU) or a
single core in a multi-core processor to

execute multiple threads concurrently.

 Multithreading

 Why Multithreading?

 Why Multithreading?
• Keep a Process Responsive

 Why Multithreading?
• Keep a Process Responsive
• Keep a Processor Busy

 Why Multithreading?
• Keep a Process Responsive
• Keep a Processor Busy
• Keep Multiple Processors Busy

 Why Multithreading?
• Keep a Process Responsive
• Keep a Processor Busy
• Keep Multiple Processors Busy
• Save Time

Multithreading in C++
Lets see an Example!

Multithreading in Python

Threading module in Python
Defining by Class

import time
import threading

class CustomThread(threading.Thread):
 def __init__(self, **kwargs):
 threading.Thread.__init__(self)
 self.param = kwargs.get(‘foo’)

 def run(self):
 # This code executes in the Thread

functions as threads

def countdown(count):
 while count > 0:
 count -= 1
 time.sleep(5)

t1 = threading.Thread(target=countdown, args=(10,))
t1.start()

Threading module in Python

Lets See An Example

TOTAL_WORK = 10000000

def countdown(count):
 while count > 0:
 count -= 1

start = time.time()
countdown(TOTAL_WORK) # Single Thread Execution
print(end - start)

A Trivial Example
Lets do all the work without Threading

- An Example by David Beazley

TOTAL_WORK = 10000000

def countdown(count):
 while count > 0:
 count -= 1

thread1 = threading.Thread(target=countdown, args=(TOTAL_WORK/2,))
thread2 = threading.Thread(target=countdown, args=(TOTAL_WORK/2,))

start = time.time()
thread1.start(); thread2.start()
thread1.join(); thread2.join()
end = time.time()

print(end - start)

A Trivial Example
Lets do all the work with Threading

Which one would be Faster?

All the work done sequentially ?

All the work divided in Two Threads?

or

All the work done sequentially took:
0.632690191269

All the work divided in Two Threads took:
0.91114282608

If two people divide a work, shouldn’t it be
faster than a single person doing all the

work?

Lets Talk About GIL Now!

Global Interpreter Lock

Global Interpreter Lock

• The GIL ensures that only one thread runs in the interpreter
at once.

Global Interpreter Lock

• The GIL ensures that only one thread runs in the interpreter
at once.

• So, any time a thread is forced to wait, other "ready" threads
get their chance to run.

Global Interpreter Lock

• The GIL ensures that only one thread runs in the interpreter
at once.

• So, any time a thread is forced to wait, other "ready" threads
get their chance to run.

• Whenever a thread runs, it holds the GIL

Processes

• I/O Bound:
processes which are associated with input/output
based activity like reading from files,etc.

Processes

• I/O Bound:
processes which are associated with input/output
based activity like reading from files,etc.

• CPU Bound
processes which spends the majority of its time
simply using the CPU (doing calculations)

GIL Behaviour

GIL is released on blocking I/O

For I/O Bound:

GIL Behaviour

Interpreter periodically performs a “check”,
every 100 interpreter "ticks"

For CPU Bound:

Before Python 3.2

Tick?

• Roughly stated, a tick corresponds to a Python
bytecode operation.

• For the most part that's true, however there are
certain bytecode instructions that do not qualify as
whole ticks.

• Ticks are uninterruptible. e.g. >>> x in range(10^6)
• The interpreter will not thread switch in the middle

of a tick.

Why GIL?

Why GIL?

• Simplified implementation
• Easy to write C Extensions
• No Deadlocks!
• Works for I/O Bound processes!

Memory Management in Python

Reference Counting
sys.getrefcount

Reference Counting

Py_DECREF()

Py_INCREF()

Methods in Python/C API

Reference Counting With Threads

Lets See an Example!
Py_DECREF()

Reference Counting With Threads

Object

AX

AX

Thread 1 Thread 2

2

AX

AX

AX

AX

Load

Decrease

Save

Load

Decrease

SaveReference Count

AX stands Accumulator Register: used in arithmetic operations

Object

AX

AX

Thread 1 Thread 2

2

AX

AX

AX

AX

2Load

Decrease

Save

Load

Decrease

Save

Reference Counting With Threads

Reference Counting With Threads

Object

AX

AX

Thread 1 Thread 2

2

AX

AX

AX

AX

2Load

Decrease

Save

Load

Decrease

Save

1

Reference Counting With Threads

Object

AX

AX

Thread 1 Thread 2

1

AX

AX

AX

AX

2Load

Decrease

Save

Load

Decrease

Save

1

1

Reference Counting With Threads

Object

AX

AX

Thread 1 Thread 2

1

AX

AX

AX

AX

Load

Decrease

Save

Load

Decrease

Save

1

Reference Counting With Threads

Object

AX

AX

Thread 1 Thread 2

1

AX

AX

AX

AX

Load

Decrease

Save

Load

Decrease

Save

1

0

Reference Counting With Threads

Object

AX

AX

Thread 1 Thread 2

0

AX

AX

AX

AX

Load

Decrease

Save

Load

Decrease

Save

1

0

0

Reference Counting With Threads

Object

AX

AX

Thread 1 Thread 2

2

AX

AX

AX

AX

Load

Decrease

Save

Load

Decrease

Save

Reference Counting With Threads

Object

AX

AX

Thread 1 Thread 2

2

AX

AX

AX

AX

2Load

Decrease

Save

Load

Decrease

Save

Reference Counting With Threads

Object

AX

AX

Thread 1 Thread 2

2

AX

AX

AX

AX

2Load

Decrease

Save

Load

Decrease

Save

2

Reference Counting With Threads

Object

AX

AX

Thread 1 Thread 2

2

AX

AX

AX

AX

2Load

Decrease

Save

Load

Decrease

Save

1

2

Reference Counting With Threads

Object

AX

AX

Thread 1 Thread 2

2

AX

AX

AX

AX

2Load

Decrease

Save

Load

Decrease

Save

1

2

1

Reference Counting With Threads

Object

AX

AX

Thread 1 Thread 2

1

AX

AX

AX

AX

2Load

Decrease

Save

Load

Decrease

Save

1

1

2

1

1

Should have been 0, isn’t it?

Reference Counting With Threads

Object

AX

AX

Thread 1 Thread 2

1

AX

AX

AX

AX

2Load

Decrease

Save

Load

Decrease

Save

1

1

2

1

1

Memory Leak!

Utilising Multiple Cores

alternative approaches

Utilising Multiple Cores

Utilising Multiple Cores

• Process based concurrency

Utilising Multiple Cores

• Process based concurrency

• C Extensions

Utilising Multiple Cores

• Process based concurrency

• C Extensions

• Cython

C-Extensions

Extending Python with C or C++

C-Extensions
Releasing the GIL from extension code

Save the thread state in a local variable.
Release the GIL

... Do some blocking I/O operation ...
Reacquire the GIL

Restore the thread state from the local variable.

C-Extensions

Py_BEGIN_ALLOW_THREADS

..Don’t Talk to CPython Interpreter..

Py_END_ALLOW_THREADS

C-Extensions

Example Demo

Threading in Python
Lets see some Visualisations

MacBook Air (13-inch, Early 2015)
1.6 GHz Intel Core i5

4 GB 1600 MHz DDR3

Benchmarked on:

Threading in Python

Threading with C-Extensions
Lets see some Visualisations

MacBook Air (13-inch, Early 2015)
1.6 GHz Intel Core i5

4 GB 1600 MHz DDR3

Benchmarked on:

Threading with C-Extensions

Guido on GIL

I'd welcome a set of patches into Py3k only if:
• performance for a single-threaded program and
• for a multi-threaded but I/O-bound program

 does NOT decrease.

The Famous GIL Removal Patch

The Famous GIL Patch of Greg

Idea: Each thread has to isolate its interpreter state and not
rely on C global variables.

• moved into a per-thread data structure.

The Famous GIL Patch of Greg

Idea: Each thread has to isolate its interpreter state and not
rely on C global variables.

• moved into a per-thread data structure.
• patch introduces a global reference-counting mutex lock

The Famous GIL Patch of Greg

Idea: Each thread has to isolate its interpreter state and not
rely on C global variables.

• moved into a per-thread data structure.
• patch introduces a global reference-counting mutex lock
• Mutable builtins such as lists and dicts need their own

locking to synchronise modifications.

The Famous GIL Patch of Greg

patch made the performance of single-threaded
applications much worse

The Famous GIL Patch of Greg

patch made the performance of single-threaded
applications much worse

so much so that the patch couldn't be adopted.

The New Gil

The New Gil
by Antoine Pitrou

Since Python 3.2

The New Gil

Earlier:“ticks" based

Now: time based

The New Gil
Benefits:

• new GIL allows a thread to run for 5ms
regardless of other threads

• Eliminates the Battle for GIL
• Eliminates Excessive Thrashing/Context Switching

References:
https://docs.python.org/3/whatsnew/3.2.html#multi-threading
https://mail.python.org/pipermail/python-dev/2009-October/093321.html

References
• http://www.dabeaz.com/GIL/
• Larry Hastings - Python's Infamous GIL
• Brett canon on GIL
• Nick Coghlan’s utilising multiple cores
• Raymond Hettinger on Concurrency
• Python C API docs

Thank You!
Github: @aktech Twitter: @iaktech

http://iamit.in

http://iamit.in

