Lets Talk About GIL

@aktech

Who am I%

Loves everything which is free and open!

Loves everything which is free and open!
including Software

>>> x = symbols('x")
>>> solveset(sin(x) - 1, domain=S.Reals)

{2n7r—|— |nEZ}

In [1]: from sympy import this
The Zen of SymPy

Unevaluated 1s better than evaluated.

The user interface matters.

Printing matters.

Pure Python can be fast enough.

If 1t's too slow, 1ts (probably) your fault.
Documentation matters.

Correctness 1s more important than speed.
Push 1t in now and improve upon it later.
Coverage by testing matters.

Smart tests are better than random tests.
But random tests sometimes find what your smartest test missed.
The Python way 1s probably the right way.
Community 1s more important than code.

Try in your browser

http://live.sympy.org/

()

Google Summer of Code

Google Summer of Code

Student application deadline
March 27 16:00 UTC

Che CTelegraph

Process

an instance of a program running in a computer.

Thread

smallest sequence of programmed instructions

Thread

light weight and share memory.

Strength of Threads

Strength of Threads

shared state

“Bveryone has everything”

- Raymond Hettinger

Weakness of Threads

Weakness of Threads

shared state

“Everyone can access everything”

Weakness of Threads

shared state

“Everyone can access everything”

Simultaneously!

Multithreading

The ability of a central processing unit (CPU) or a
single core in a multi-core processor to
execute multiple threads concurrently.

Multithreading

Process

Time

Why Multithreading?

Why Multithreading?

+ Keep a Process Responsive

Why Multithreading?

+ Keep a Process Responsive
» Keep a Processor Busy

Why Multithreading?

+ Keep a Process Responsive
» Keep a Processor Busy
- Keep Multiple Processors Busy

Why Multithreading?

+ Keep a Process Responsive
» Keep a Processor Busy
- Keep Multiple Processors Busy

« Save Time

Multithreading in C++

Lets see an Example!

Multithreading in Python

Threading module in Python

Defining by Class

import time
import threading

class CustomThread(threading.Thread):
def __init__(self, **kwargs):
threading.Thread.__init__(self)
self.param = kwargs.get(‘foo’)

def run(self):
This code executes i1n the Thread

Threading module in Python

functions as threads

def countdown(count):

while count > 0:
count -=1

time.sleep(5)

tl = threading.Thread(target=countdown, args=(10,))
tl.start(Q)

Lets See An Example

A Trivial Example

Lets do all the work without Threading

TOTAL_WORK = 10000000

def countdown(count):
while count > 0:
count -= 1

start = time.time()

countdown(TOTAL_WORK) # Single Thread Execution
print(end - start)

- An Example by David Beazley

A Trivial Example

Lets do all the work with Threading

TOTAL_WORK = 10000000

def countdown(count):
while count > Q:
count -=1

threadl = threading.Thread(target=countdown, args=(TOTAL_WORK/Z,))
thread2 = threading.Thread(target=countdown, args=(TOTAL_WORK/2,))

start = time.time()
threadl.start(); threadZ.start()
threadl.join(); thread2.join()
end = time.time()

print(end - start)

Which one would be Faster®

All the work done sequentially %

or

All the work divided in Two Threads®

All the work done sequentially took:
0.632690191269

All the work divided in Two Threads took:
0.91114282608

If two people divide a work, shouldn’t it be

faster than a single person doing all the
work?

Lets Talk About GIL Now!

Global Interpreter Lock

Global Interpreter Lock

- The GIL ensures that only one thread runs in the interpreter

at once.

Global Interpreter Lock

- The GIL ensures that only one thread runs in the interpreter
at once.

S0, any time a thread is forced to wait, other "ready" threads
get their chance to run.

Global Interpreter Lock

- The GIL ensures that only one thread runs in the interpreter
at once.

S0, any time a thread is forced to wait, other "ready" threads
get their chance to run.

- Whenever a thread runs, it holds the GIL

Processes

- I/O Bound.:

processes which are associated with input/output
based activity like reading from files,etc.

Processes

- I/O Bound.:

processes which are associated with input/output
based activity like reading from files,etc.

« CPU Bound

processes which spends the majority of its time
simply using the CPU (doing calculations)

GIL Behaviour
For I/O Bound:

GIL is released on blocking I/0

GIL Behaviour
For CPU Bound:

Interpreter periodically performs a “check”,
every 100 interpreter "ticks"

Before Python 3.2

Tick?

- Roughly stated, a tick corresponds to a Python
bytecode operation.
For the most part that's true, however there are

certain bytecode instructions that do not qualify as
whole ticks.

Ticks are uninterruptible. €.£. >>> x in range(10/6)

- The interpreter will not thread switch in the middle
of a tick.

Why GIL?

Why GIL?

Simplified implementation
Easy to write C Extensions

No Deadlocks!

Works for I/O Bound processes!

Memory Management in Python

Reference Counting

sys.getrefcount

Reference Counting

Py_INCREF()
Py_DECREF()

Methods in Python/C API

Reference Counting With Threads

Lets See an Example!
Py_DECREF()

Reference Counting With Threads

Object

Thread 1 Thread &

Load
\4
Decrease @

Reference Count
Save

AX stands Accumulator Register: used in arithmetic operations

Reference Counting With Threads

Object

Thread 1 Thread &
Load

Save

Reference Counting With Threads

Object

Thread 1 Thread &
Load

Decrease @
Save

Reference Counting With Threads

Object

Thread 1 Thread &
Load

Decrease /®

Reference Counting With Threads

Object

Thread 1

Thread &

Load

Decrease ®/

Save

Reference Counting With Threads

Object

Thread 1 Thread &

Load Load

Decrease @ Decrease
Save Save

Reference Counting With Threads

Object

Thread 1 Thread &

Load

Decrease @\

Save

Reference Counting With Threads

Object

Thread 1 Thread &

Load
Decrease @

Save

Reference Counting With Threads

Object

Thread 1 Thread &
Load

Save

Reference Counting With Threads

Object

Thread 1 Thread &
Load

Decrease @/

Save

Reference Counting With Threads

Object

Thread 1 Thread &
Load

Decrease @
Save

Reference Counting With Threads

Object

Thread 1 Thread &

Load Load

Decrease @ Decrease
Save Save

Reference Counting With Threads

Object

Thread 1 Thread &
Load

Decrease /®\

Should have been O, isn’t it?

Reference Counting With Threads

Object

Thread 1 Thread &
Load

Decrease /®\

Memory Leak!

Utilising Multiple Cores

alternative approaches

Utilising Multiple Cores

Utilising Multiple Cores

* Process based concurrency

Utilising Multiple Cores

* Process based concurrency

e C Bxtensions

Utilising Multiple Cores

* Process based concurrency

e C Bxtensions

e Cython

C-Extensions

Extending Python with C or C++

C-Extensions

Releasing the GIL from extension code

Save the thread state in a local variable.
Release the GIL
.. Do some blocking I/O operation ...
Reacquire the GIL
Restore the thread state from the local variable.

C-Extensions

Py_BEGIN_ALLOW_THREADS
..Don’t Talk to CPython Interpreter..

Py_END_ALLOW_THREADS

C-Extensions

Example Demo

Threading in Python

Lets see some Visualisations

Bench

marked on:

MacBook Air (13-inch, Early 2015)
1.6 GHz Intel Core i5
4 GB 1600 MHz DDRS3

Threading in Python

1 = single thread
- multi thread

01 02 03 04 05 06 07 08 09
Number of loops le8

-~ single thread
- multi thread

01 02 03 04 05 06 07 08 09
Number of loops 1e8

Time

Time

4 = single thread
- multi thread

L Ll |

01 02 03 04 05 06 07 08 09
Number of loops 1e8

1 = single thread

- multi thread

1 Ll |

01 02 03 04 05 06 07 08 09
Number of loops 1e8

Threading with C-Extensions

Lets see some Visualisations

Benchmarked on:

MacBook Air (13-inch, Early 2015)
1.6 GHz Intel Core i5
4 GB 1600 MHz DDRS3

Time

Time

0.35 -

0.30 1

0.25 4

0.20 -

0.15 A

0.10 4

0.05 -

0.00

Threading with C-Extensions

- single thread
0.30 multi thread
0.25 -
0.20
0.15 -
0.10 -
0.05 -
01 02 03 04 05 06 07 08 09
Number of loops 1e8
—— single thread
multi thread
01 02 03 04 05 06 07 08 09
Number of loops led

Time

Time

0.25 -

0.20 1

0.15 -

0.10 A

0.05 -

0.35 A

0.30 1

0.25 -

0.20 -

0.15 A

0.10 -

0.05 -

0.00

- single thread
multi thread

01 02 03 04 05 06
Number of loops

07 08 09
1e8

-~ single thread
multi thread

01 02 03 04 05 06
Number of loops

07 08 09
1e8

Guido on GIL

I'd welcome a, set of patches into Py3dk only if:
» performance for a single-threaded program and
- for a multi-threaded but I/0-bound program
does NOT decrease.

The Famous GIL Removal Patch

The Famous GIL Patch of Greg

Idea: Each thread has to isolate its interpreter state and not
rely on C global variables.

- moved into a per-thread data structure.

The Famous GIL Patch of Greg

Idea: Each thread has to isolate its interpreter state and not
rely on C global variables.

- moved into a per-thread data structure.

+ patch introduces a global reference-counting mutex lock

The Famous GIL Patch of Greg

Idea: Each thread has to isolate its interpreter state and not
rely on C global variables.

- moved into a per-thread data structure.

- patch introduces a global reference-counting mutex lock

 Mutable builtins such as lists and dicts need their own
locking to synchronise modifications.

The Famous GIL Patch of Greg

patch made the performance of single-threaded
applications much worse

The Famous GIL Patch of Greg

patch made the performance of single-threaded
applications much worse

so much so that the patch couldn't be adopted.

The New Gil

The New Gil

by Antoine Pitrou

Since Python 3.2

The New Gil

Earlier:“ticks" based

Now: time based

The New Gil

Benefits:

new GIL allows a thread to run for sms

regardless of other threads

Eliminates the Battle for GIL

Eliminates Excessive Thrashing/Context Switching

References:
https://docs.python.org/3/whatsnew/3.2.html#multi-threading
https://mail.python.org/pipermail/python-dev/2009-0October/093321.html

References

http://www.dabeaz.com/GIL/

Larry Hastings - Python's Infamous GIL
Brett canon on GIL

Nick Coghlan’s utilising multiple cores
Raymond Hettinger on Concurrency
Python C API docs

Thank Youl!

Github: @aktech . @iaktech
http://iamit.in

http://iamit.in

