Writing code for science and data

e} ~,,.., h
<~r~4‘.1;. mg,.},Jﬁs.. .< n,.. o
pa w»rmaé O e it
dae B o 1A

Varoquaux

4

lreia—

import science

science.discover()

Writing code for science and data

.. L ww}/:ﬁj;:;ti;“ ¥r
Gaél - R
Varoquaux

4

lreia—

import science |

science.discover()

import data science

data science.discover()

Active member of
' the scipy ecosystem [}
since early 2000s |

before scipy was cool

before pydata existed

| am now interested in cognitive neuroscience
linking psychology and neuroscience (neural implementations)

Connect neural activity to thoughts and cognition

Machine learning for cognitive neuroimaging

Brain
imaging

trials word, dataobserved
el Wrgs
1 SRR neuralerd experiments m
cognition comprehension compic o

'Y'""”e'ggtcitf:t'er examined dsvi mel‘k’nuwiede
itive imsiaht k wardsyisua u

odels

attentional present;.sgcogniti‘;““e" Jjudgmentsmood
behavior «
h sentences, sty
_stimulus cur\gguttst-as-ks Pn!’r‘!o"g lri!gs[\i‘lsissﬁ%eeswecﬁtedg’ﬁdmon
g, Suthdrsparticipaits "t Study SBicedses e
SHBerali Su S Pt quency

control

perfurmanca%\gdm

G
ngs
g onle responsee coptualevid U ~ . g
% leftimuhowever PETOEPILE BV enceinformation .o
scireion 35S0C1A 110N showedmodeldifferent targetwhether working
Protet Concinons fC €Sunderlying ff
scales Context e
brain rather OPIECt episodic reSponses Cortex
serialregors face sound o fiuence

causal
activty

Learn a bilateral link between brain activity
and cognitive function

Machine learning for cognitive neuroimaging

Predicting neural response from stimuli

Machine learning for cognitive neuroimaging

Visual system

V1

) cortex
Inferior V2

Fusiform temporal cortex
face area cortex

Predicting neural response from stimuli

Machine learning for cognitive neuroimaging

Visual system

Jack?

A Inferior V2
Fusiform temporal cortex
face area cortex

Predicting neural response from stimuli

Machine learning for cognitive neuroimaging

Visual system

Jack?

\ Inferior v2
Fusiform temporal cortex
face area cortex

Predicting neural response from stimuli
Convolutional networks map well to human visual system

Machine learning for cognitive neuroimaging

“Brain reading”: decoding

Machine learning for cognitive neuroimaging

models
time ecion
vo rds Sualknnwmdqc

et judgmentsmood
cognitive . o

g research sentences,
sudespresente
dyprocessestae:

n
y
control
ye'g

9

Lots of moving parts *"

Machine Learning, 1/0,
reporting, job management

S
L)0,
v,‘jf' = 0

nilearn:
scikit-learn neuroimaging

Machine learning for cognitive neuroimaging

11111111 e time
VO rds Sual!knuwletdqe ,
st judgmentsmoo

coqmtlveperforman
g research sentences, =
studiesPrESE Mted dmiion
yprocessesteamsy

control
i
o

nilearn:
scikit-learn neuroimaging

Writing code for science and data

/77 7

~ 1 Ilterative thinking

-

- <
‘ ‘ 2 Library design
@;,‘ 3 Machine learning in Pyth

1 Iterative thinking

1 Our workflow: (data) science with computers

Work based on intuition
and experimentation

Conjecture
Experiment

= Interactive & framework-less

needs consolidation

keeping flexibilit
ping y ;

Yet

1 Reproducibility challenge in this iterative workflow

Reproducibility

New analysis
coming to the same conclusion

Enables verification / falsification

Also relevant for data science:
Operational recommendations can be questioned

Akin to challenges in sys-admin:
Try rebuilding a server after disk loss

1 Reproducibility challenge in this iterative workflow

Reproducibility

New analysis
coming to the same conclusion

Enables verification / falsification

Missing steps / files

Libraries have changed

Non portable code

Statistical / numerical instabilities
No one knows where the info is

1 Reproducibility challenge in this iterative workflow

Reproducibility

New analysis
coming to the same conclusion

Enables verification / falsification

Impediments

m Missing steps / files

m Libraries have changed

m Non portable code

m Statistical / numerical instabilities
m No one knows where the info is

m [echnical
m Human

Code quality matters Manual steps are evil

1 Reproducibility challenge in this iterative workflow

Reproducibility
New analysis
coming to the same conclusion
Enables verification / falsification

Frozen food

Reusability
Applying the approach to a new problem

Being able to understand, modify, ‘l ’.

run in new settings

Let us enable reusability

1 A design pattern in computational experiments

MVC pattern from Wikipedia:
Model View
Manages the data il Output represen-

Controller
Accepts input

and converts it to

commands
for model and view

tation
Possibly several views

and rules of the
application

Photo-editing software
Filters Canvas Tool palettes

Typical web application
Database Web-pages URLs

1 A design pattern in computational experiments
MVC pattern from Wikipedia:
Model View

Manages the data [l Output represen-

tation
Possibly several views

Controller
Accepts input
and converts it to

commands
for model and view

and rules of the
application

For science and data:

Numerical, data- ;
rocessing, & ex- Results, as files.
i L Data & plots

perimental logic

Module Post-processing script Script

with functions CSV & data files = for loops

Imperative API
Avoid input as files:
not expressive

1 A design pattern in computational experiments

A recipe

m 3 types of files:
e modules ecommand scripts e post-processing scripts

m CSVs & intermediate data files
Separate computation from analysis / plotting

m Code and text (and data) = version control

Numerical, data- ; :

. Results, as files. Imp_er_at|ve AP_I
processing, & ex- Data & blots Avoid input as files:
perimental logic P not expressive
Module Post-processing script Script
with functions CSV & data files = for loops

1 A design pattern in computational experiments

A recipe

m 3 types of files:
e modules ecommand scripts e post-processing scripts

m CSVs & intermediate data files
Separate computation from analysis / plotting

m Code and text (and data) = version control

m Decouple steps
Goals: m Reuse code
m Mitigate compute time

Module Post-processing script Script
with functions CSV & data files = for loops

1 How | work progressive consolidation

m Start with a script playing to understand the problem

1 How | work progressive consolidation

Start with a script playing to understand the problem

|dentify blocks/operations = move to a function

Use functions

Obstacle: local scope

requires identifying input and output variables
That's a good thing

Interactive debugging / understanding
inside a function: %debug in IPython

1 How | work progressive consolidation

Start with a script playing to understand the problem
|dentify blocks/operations = move to a function

As they stabilize, move to a module

Modules
m enable sharing between experiments
= avoid 1000 lines scripts + commented code

m enable testing

® rast experiments as tests
= gives confidence, hence refactorings I
‘3\‘;\.’/@ 3 Al N “

5
Sy

1 How | work progressive consolidation

m Start with a script playing to understand the problem
m Identify blocks/operations = move to a function
m As they stabilize, move to a module

m Clean: delete code & files you have version control

~ Attentional load makes it |mp055|b|e
.lL?* to find or understand thmgs

1 How | work progressive consolidation

m Start with a script playing to understand the problem
m Identify blocks/operations = move to a function
m As they stabilize, move to a module

m Clean: delete code & files you have version control

Why is it hard? Know your tools

m Refactoring editor
m Version control

Long compute times
make us unadventurous

1 joblib.Memory

The memoize pattern
mem = joblib.Memory(cachedir=’.")

g = mem.cache(f)
b = g(a) # computes a using f
c = g(a) # retrieves results from store

For scientific and data computing
m a & b can be big
ma & b arbitrary objects no change in workflow
m Results stored on disk
m Cache flushed when f changes safe caching

1 joblib.Memory

The memoize pattern
mem = joblib.Memory(cachedir=’.")

g = mem.cache(f)
b = g(a) # computes a using f
c = g(a) # retrieves results from store

For scientific and data computing

Fits in experimentation loop
Helps decrease re-run times

Black-boxy, persistence only implicit

Discourages function refactoring (avoid recomputing)
tip: cache functions inside functions

Using software-engineering best practices

A T

TP A a3

1 The ladder of code quality

m Use pyflakes in your editor seriously
m Coding convention, good naming

m Version control Use git + github
m Code review

m Unit testing
If it's not tested, it's broken or soon will be

m Make a package
controlled dependencies and compilation

lﬂll“lllﬁ R ™ e

1 The ladder of code quality

m Use pyflakes in your editor seriously
m Coding convention, good naming

m Version control Use git + github
m Code review

m Unit testing
If it's not tested, it's broken or soon will be

m Make a package
controlled dependencies and compilation

Increasing cost

<

\gOId premature software/engmeermg
._i"w—_urhh—mm '-,-?-L

lﬂ [‘ls NI

.l‘-

1 The ladder of code quality

Over versus under engineering
Our goal is generating insights

m Experimentation to develop intuitions
= new ideas

m As the path becomes clear: consolidation

Heavy engineering too early freezes bad ideas

Avoid premature software engineering
'.'.'“ ‘!“_-'ﬁu:i*!'- J‘ﬁm .. .f'f".

'M'll“ ‘5 '!l' q H1“|.f

1 Libraries

Increasing cost

m Use pyflakes in your editor

m Coding convention, good naming
m Version control

m Code review

m Unit testing

m Make a package

Ilbrary Y

2 > . e
.._,1.,,,... -

ii'mm oo br'limn

Library design

R Bari
If doing research is like crossing oceans
doing software is like building briges

2 Principles of API design for SciPy / PyData stack

m Be a library
m Functions trump classes

m Shallow objects, understandable by their “surface”:

e interface (set of methods)
: No too many
e attributes

m Universal data objects for inputs & output:)
dicts, numpy arrays, pandas dataframe s

m Few kinds of “action” objects,
defined by their function 3

Building on solid foundations
Plug components together for an application
3D plotting + statistics v~ Neuroimaging

How do we ensure correctness?

Testing If it ain’t tested, it's broken

Building on solid foundations
Plug components together for an application
3D plotting + statistics v~ Neuroimaging

How do we ensure correctness?

Testing If it ain’t tested, it's broken

establishes correctness enables refactoring

2 Testing: what we've learned in scikit-learn

m Testing basic mathematical properties
eg a minimizer decreases cost function
or symmetries, or special cases

Tests should run very fast

2 Testing: what we've learned in scikit-learn
m Testing basic mathematical properties
m Make everything perfectly reproducible.

Never use the global generator np.random in tests
it creates side effects

Generators as optional inputs to functions:‘)Qy
def f(x, random_state=None): q@g
if random_state is None: '\;

random_state = np.random.RandomState()

noise = random_state.randn()

2 Testing: what we've learned in scikit-learn

m Testing basic mathematical properties
m Make everything perfectly reproducible.

m Test interface specification: “auto” tests
e Reproducibility on simple data
e Multiple data types
e Proper errors on bad input
e Objects respect interface

2 Testing: what we've learned in scikit-learn

m Testing basic mathematical properties
m Make everything perfectly reproducible.
m Test interface specification: “auto” tests

mAdd a test each time there is a bug

3 Machine learning in Python

scikit-learn “

3 My stack for data science

Python, what else?

m General-purpose language
m Interactive
mEasy to read / write

3 My stack for data science

The scientific Python stack
numpy arrays

Mostly a float*x*

No annotation / structure &
Universal across applications @
Easily shared across languages

3 My stack for data science

The scientific Python stack
numpy arrays

Connecting to
CERGER
Columnar data
mscikit-image
Images

mscipy
Numerics, signal processing

3 Machine learning in a nutshell

Machine learning is about making predictions from data

e.g. learning to distinguish apples from oranges

3 Machine learning in a nutshell

Machine learning is about making predictions from data

e.g. learning to distinguish apples from oranges

Prediction is very difficult, especially about the future. Niels Bohr

Learn as much as possible from the data
but not too much

3 Machine learning in a nutshell

Machine learning is about making predictions from data

X

Which model do you prefer?

Prediction is very difficult, especially about the future. Niels Bohr

Learn as much as possible from the data
but not too much

3 Machine learning in a nutshell

Machine learning is about making predictions from data

Minimizing train error # generalization : overfit

Prediction is very difficult, especially about the future. Niels Bohr

Learn as much as possible from the data
but not too much

3 Machine learning in a nutshell

Machine learning is about making predictions from data

X

Adapting model complexity to data — regularization

Prediction is very difficult, especially about the future. Niels Bohr

Learn as much as possible from the data
but not too much

3 Machine learning without learning the machinery

.

/

74

machine learning in Python

3 Machine learning without learning the machinery

.

A library, not a program
m More expressive and flexible

m Easy to include in an ecosystem
let's disrupt something new

/

74

machine learning in Python

3 Machine learning without learning the machinery

A library, not a program
m More expressive and flexible
m Easy to include in an ecosystem

let's disrupt something new .

N

As easy as py

sklearn svm
classifier = svm.SVC()

classifier.fit(X_train, y_train)
Y _test = classifier.predict(X_test)

-
machine learning in Python

3 Show me your data: the samples x features matrix

Data input: a 2D numerical array

Requires transforming your problem

so1dwes
O
=~
S
~

3 Show me your data: the samples x features matrix

Data input: a 2D numerical array N

Requires transforming your problem 0,9 A

_ o, %
With text documents: 0% %5 @ @

Slusundoop
(<)
(o}
(e}
-
(o}
(o)
(o}
O
(o}

sklearn.feature_extraction.text.TfIdfVectorizer

“Big” data

Engineering efficient processing pipelines

Many samples

sa1dwes
O
£~
(<)
~
=
(=)

or

Many features

sa91dues
(=}
BN
(<=}
~

See also: http://www.slideshare.net/GaelVaroquaux/processing-
biggish-data-on-commodity-hardware-simple-python-patterns

3 Many samples: on-line algorithms

estimator.partial_fit(X_train, Y_train)

3 Many samples: on-line algorithms

estimator.partial_fit(X_train, Y_train)

Supervised models: predicting
sklearn.naive_bayes. ..
sklearn.linear model.SGDRegressor

sklearn.linear_model.SGDClassifier

Clustering: grouping samples I
sklearn.cluster.MiniBatchKMeans
sklearn.cluster.Birch .

Linear decompositions: finding new representations
sklearn.decompositions.IncrementalPCA
sklearn.decompositions.MiniBatchDictionarylLearning

sklearn.decompositions.LatentDirichletAllocation

3 Many features: on-the-fly data reduction

= Reduce the data as it is loaded

X_small = \
estimator.transform (X_big, y

¢

NS

=

3 Many features: on-the-fly data reduction

Random projections (will average features)

sklearn.random_projection
random linear combinations of the features

Fast clustering of features

sklearn.cluster.FeatureAgglomeration
on images: super-pixel strategy

Hashing when observations have varying size __
(e.g. words)

sklearn.feature extraction.text.

HashingVectorizer!
stateless: can be used in parallel :

More gems in scikit-learn

SAG:

linear model.LogisticRegression(solver=’sag’)

Fast linear model on biggish data

More gems in scikit-learn
SAG:

linear model.LogisticRegression(solver=’sag’)

Fast linear model on biggish data

PCA == RandomizedPCA: (0.18)

Heuristic to switch PCA to random linear algebra
Huge speed gains for biggish data

2 < Fights global warming

TS (ML

More gems in scikit-learn

Outlier detection and isolation forests (0.13)

1. Isolation Forest (errors: 6) 2. One-Class SVM (errors: 14) 3. Robust covariance (errors: 14)

4
S S S S I S
< B) / A \ \ I A\

0 90020208080800980909999990525%¢
099090 0838393000093e3e30000000500e
8090909090992090909 095959980909 0% e %098,
S0S080908090908080908090%0 80909080 0008009

\ 0 D 4 =

D00 00385030000¢5990000¢5999000¢5930003e58 303

& .g...:. - = ..:.. :
s Time to 1] Segeses

2 e e U B = 2 S e 0 0 I B e o009
SedeSed08e208030%0 303080 0809 o

Sedegedededadeded 00000‘0‘0‘0’00 ~
e e e e e e e e e Cr
O O e e B e e A O e B e B e B e 6 8 e e B e B 25 O O
ﬁi_ﬁxﬂ .:............ 29 DO

&l T el ol “. '
\" 7 2\ = {
* (" K) \
{ o\l { D - ¢

Scipy-lectures: learning numerical Python

Many problems are better solved by
documentation than new code

Scipy-lectures: learning numerical Python
Comprehensive document: numpy, scipy, ...

1. Getting started with Python for science

2. Advanced topics

3. Packages and applications

Scipy Lecture Notes

One document to learn numerics, science, and data with Python

scientific Python ecosystem: a quick introduc & Download

niques. The di E 2 [APDF, 2y
on [BPDF, 17

About the py lecture notes

Authors License Contributing

http://scipy-lectures.org

1. Getting started with Python for science

Scipy-lectures: learning numerical Python

Code examples sphinx-gallery

Pie chart

A simple pie chart example with matplotlib.

Python source code: plot_pie_ex.py

import numpy as np
import matplotlib.pyplot as plt

n = 20
Z = np.ones(n)
Z[i-1] *= 2

plt.axes([0.025, ©.025, 0.95, 0.95])

plt.pie(z, explode=Z*.05, colors = ['%f' % (i/float(n)) for i in range(n)])
plt.axis('equal')

plt.xticks(())

plt.yticks()

Scipy-lectures: learning numerical Python

Code examples sphinx-gallery

Pie chart

A simple pie chart example with matplotlib.

.

Useful for library design too:
example-driven design

ol

Python source code: plot_pie_ex.py

import numpy as np
import matplotlib.pyplot as plt

n = 20
Z = np.ones(n)
Z[i-1] *= 2

plt.axes([0.025, ©.025, 0.95, 0.95])

plt.pie(z, explode=Z*.05, colors = ['%f' % (i/float(n)) for i in range(n)])
plt.axis('equal')

plt.xticks(())

plt.yticks()

Writing code for science and data

1 Go fast: Experimentation & progressive consolidation
Agility is key for experimentation
Don't adopt engineering practices too early
Do adopt them in time

3 @GaelVaroquaux

Writing code for science and data

1 Go fast: Experimentation & progressive consolidation

2 Go far: Quality software is the cement of science
Components made for reuse
Quality & testing

3 @GaelVaroquaux

Writing code for science and data

1 Go fast: Experimentation & progressive consolidation
2 Go far: Quality software is the cement of science

3 Facilitate: Make it easy to use

API, docs, & examples

o0 4
scikit-learn

i

Machine learning without learning the machinery

’@GaelVaroquaux

	Iterative thinking
	Library design
	Machine learning in Python

