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• This is not your typical computer-science talk.
• You will probably not learn new fancy coding 

techniques here.
• What you will learn is that you can do a massive 

amount of science with relatively simple Python. 
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From Astrophysics to Cosmology
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Computing for Typical Astronomers

• Science computing can be quite different from that in industry
➡ Quick(-and-dirty) results, interactive
➡ Less rigorous testing and control
➡ Never know what to expect, moving targets and loose deadlines 
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—> it’s like an experiment!
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Computing for Typical Astronomers

• Recent used languages in astrophysics
➡ C, C++, FORTRAN, perl, shell script, Mathematica, MATLAB, ROOT …
➡ IDL, python, and libraries/wrappers/interface to above

• Common Python packages / interface in astro:
➡ SciPy, NumPy, matplotlib, astropy
➡ IPython / Jupyter
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• Public python-related packages developed in our group
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Computing for Typical Astronomers

/cosmo-ethz/hope 

/cosmo-ethz/CosmoHammer 

/jakeret/abcpmc 

HOPE: A Python Just-In-Time compiler for astrophysical computations

CosmoHammer: Parallel MCMC for HPC clusters

ABCPMC: Parallel Approximate Bayesian Computation

PynPoint: Direct imaging of exo-planets

http://pynpoint.ethz.ch 

https://github.com/cosmo-ethz/hope
https://github.com/cosmo-ethz/CosmoHammer
https://github.com/jakeret/abcpmc
http://pynpoint.ethz.ch/
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Two Examples

• Mapping dark matter using millions of galaxy images
- Physical Review Letters 115 , 051301 (2015), arXiv: 1505.01871
- Phys.Rev.D 92 , 022006 (2015), arXiv: 1504.03002

• Calibrating radio telescopes with drones
- Publications of the Astronomical Society of the Pacific 127, 1131–1143, (2015), 

arXiv:1505.05885
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Mapping Dark Matter

• We don’t know a whole lot about our Universe, because we cannot 
see most of the stuff in the Universe!
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68% Dark Energy
(expansion of the Universe)

5% Normal Matter
(5000 years of human history)

27% Dark Matter
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Gravitational Lensing
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lens 
(mass)

source
image

observer

We can see dark matter through 
Gravitational Lensing!
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• We want to measure accurately shapes of a lot of small, faint, noisy 
galaxies, and get useful information out of them.

The Computational Challenge
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~100,000,000 x
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• We want to measure accurately shapes of a lot of small, faint, noisy 
galaxies, and get useful information out of them.

The Computational Challenge
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/barbabytprowe/great3-public 
/GalSim-developers/GalSim 

https://github.com/barbabytprowe/great3-public
https://github.com/GalSim-developers/GalSim


Swiss Python Summit 2016-02-05

The Dark Energy Survey

12

DES footprint

Dec

RA0

-30

-60

5-yr footprint SN fields Science Verification Year 1

Tuesday, December 31, 13

DES is an ongoing galaxy 
imaging survey and will 

cover 5000 sq. degrees 
over 5 years
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The Dark Energy Survey

• The data processing pipeline (partially Python)
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• raw data
• calibration
• stacking

• object detection
• masking artefacts
• measure characteristics 

of each object (size, 
brightness, shape etc.)

• classification

• “cataloging”
• science analysis
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Mapping Dark Matter
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tions from simulations. In Sec. VII we estimate the level of
contamination by systematics in our results from a wide range
of sources. Finally, we conclude in Sec. VIII. For a summary
of the main results from this work, see the companion paper
in PRL [39].

II. METHODOLOGY

In this section we first briefly review the principles of weak
lensing in Sec. II A. Then, we describe the adopted mass re-
construction method in Sec. II B. Finally in Sec. II C, we de-
scribe our method of generating galaxy density maps. The
galaxy density maps are used as independent mass tracers in
this work to help confirm the signal measured in the weak
lensing mass maps.

A. Weak gravitational lensing

When light from galaxies passes through a foreground mass
distribution, the resulting bending of light leads to the galaxy
images being distorted [e.g. 1]. This phenomenon is called
gravitational lensing. The local mapping between the source
(�) and image (✓) plane coordinates (aside from an overall
displacement) can be described by the lens equation:

���0 = A(✓)(✓�✓0), (1)

where �0 and ✓0 is the reference point in the source and the
image plane. A is the Jacobian of this mapping, given by

A(✓) = (1�k)

✓
1�g1 �g2
�g2 1+g1

◆
, (2)

where k is the convergence, gi = gi/(1 � k) is the reduced
shear and gi is the shear. i = 1,2 refers to the 2D coordinates
in the plane. The factor (1 � k) causes galaxy images to be
dilated or reduced in size, while the terms in the matrix cause
distortion in the image shapes. Under the Born approxima-
tion, which assumes that the deflection of the light rays due to
the lensing effect is small, A is given by [e.g. 1]

Ai j(✓,r) = di j �y,i j, (3)

where y is the lensing deflection potential, or a weighted pro-
jection of the gravitational potential along the line of sight.
For a spatially flat Universe, it is given by the line of sight
integral of the 3D gravitational potential F [40],

y (✓,r) = 2
Z r

0
dr0 r � r0

rr0 F
�
✓,r0�, (4)

where r is the comoving distance. Comparison of Eq. (3) with
Eq. (2) gives

k =
1
2

—2y =
1
2

(y,11 +y,22) ; (5)

� = g1 + ig2 =
1
2

(y,11 �y,22)+ iy,12. (6)

For the purpose of this paper, we use the Limber approxima-
tion which lets us use the Poisson equation for the density
fluctuation d = (D� D̄)/D̄ (where D and D̄ are the 3D density
and mean density respectively):

—2F =
3H2

0 Wm

2a
d , (7)

where a is the cosmological scale factor. Eq. (4) and Eq. (5)
give the convergence measured at a sky coordinate q from
sources at comoving distance r:

k(✓,r) =
3H2

0 Wm

2

Z r

0
dr0 r0(r � r0)

r
d (✓,r0)

a(r0)
. (8)

We can generalize to sources with a distribution in comoving
distance (or redshift) f (r) as: k(✓) =

R
k(✓,r) f (r)dr. That

is, a k map constructed over a region on the sky gives us the
integrated mass density fluctuation in the foreground of the k
map weighted by the lensing weight p(r0), which is itself an
integral over f (r):

k(✓) =
3H2

0 Wm

2

Z r

0
dr0 p(r0)r0 d (✓,r0)

a(r0)
, (9)

with

p(r0) =
Z rH

r0
dr f (r)

r � r0

r
, (10)

where rH is the comoving distance to the horizon. For a spec-
ified cosmological model and f (r) specified by the redshift
distribution of source galaxies, the above equations provide
the basis for predicting the statistical properties of k .

B. Mass maps from Kaiser-Squires reconstruction

In this paper we perform weak lensing mass reconstruction
based on the method developed in Kaiser and Squires [41].
The Kaiser-Squires (KS) method is known to work well up
to a constant additive factor as long as the structures are in
the linear regime [33]. In the non-linear regime (scales cor-
responding to clusters or smaller structures) improved meth-
ods have been developed to recover the mass distribution [e.g.
42, 43]. In this paper we are interested in the mass distribution
on large scales; we can therefore restrict ourselves to the KS
method. The KS method works as follows. The Fourier trans-
form of the observed shear, �̂, relates to the Fourier transform
of the convergence, k̂ through

k̂` = D⇤
`�̂`, (11)

D` =
`2

1 � `2
2 +2i`1`2

|`|2 , (12)

where `i are the Fourier counterparts for the angular coordi-
nates qi, i = 1,2 represent the two dimensions of sky coor-
dinate. The above equations hold true for ` 6= 0. In practice
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Convert galaxy shapes to mass:

Galaxy shapesMass
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Mapping Dark Matter

Simulation is a crucial 
ingredient in cosmological 
analyses, since many of the 
analysis steps are heavily non-
linear and couples with one 
another.

scipy.ndimage
scipy.fftpack
scipy.signal
astropy.io

astropy.wcs
numpy.random

numpy.ma
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• Weak gravitational lensing is a tool we use to extract information about 
Dark Matter, and the name of the game is measuring galaxy shapes. 

• The lensing community uses a lot of inspirations from the computing and 
statistics community.

16

Summary: Mapping Dark Matter

• We used data from the Dark 
Energy Survey to make Dark 
Matter maps.
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Radio Telescope Calibration

• The Bleien Observatory, operated by the ETH Cosmology group
• Gränichen, Switzerland (50 min outside Zürich), in a farm…
• 5m and 7m single-dish telescopes
• Before doing science, we need to calibrate our telescope, i.e. 

understand how our instrument responses to the incoming signal. 

17
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The Drone Experiment
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Total weight: 10.9 kg (<2 kg load)
Max. flight time: 13.5 min

Image credit: Koptershop

The Drone Experiment
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The Computational Challenge

• Interface between inhomogeneous and messy data, tools and 
people — communication and sharing results.

• Spontaneous improvisation and exploration of data — you figure 
out things on the way.

• Plotting is very important!
• All of this means a lot of IPython notebooking…

20
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Analysis

21
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Results

22

scipy.interpolate
scipy.special
scipy.optimize

astropy.convolution
seaborn

2D maps of the 
telescope beam 

profile with very 
high S/N
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Summary: Radio Telescope Calibration

23

• The easy interface and interactive nature of Python allows 
efficient data exploration and discussion in science.

• In this example of calibrating our radio telescope, IPython 
notebook has been especially useful.

• Drones are cool :)
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Take-Home Message

24

There is a lot of stuff 
lying between us and 
the vast cosmos, most 

of which can be solved 
using Python.
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Cool People I Work with…
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The ETH 
Cosmology Group

Other Dark Energy Survey 
Collaborators

Vinu Vikram (Argonne National Lab, USA)
 Bhuvnesh Jain (University of Pennsylvania, USA) 

David Bacon (University of Portsmouth, UK)  



Drone in Action
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Backup Slides
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Gravitational Lensing

28

2 V. Vikram et al.

and clusters of galaxies. We also study the effect of various possi-
ble systematics in the data and quantify them based on correlation
analysis. We extend our analysis to identify large scale features in
the mass map which will be used for future studies.

This paper is organised as follows: In §2 we describe the theo-
retical foundation and methodology for constructing the mass maps
and galaxy density maps used in this paper. We then describe the
DES dataset we use in this work in §3, together with the simula-
tion used to interpret our results. In §4 we present the reconstructed
mass maps and discuss qualitatively the correlation of these maps
with foreground structure. In §5, we carry out a quantify the wide-
field mass-to-light correlation on different spatial scales using the
full 140 deg2 field. We show that our results are consistent with ex-
pectation from simulations. In §6 we estimate the level of contam-
ination by systematics in our results from a wide range of sources.
Finally, we conclude in §8.

2 METHODOLOGY

In this section we first briefly review the principles of weak lens-
ing in section 2.1. Then, we describe the background theory of our
mass reconstruction method in section 2.2. Finally in section 2.3,
we describe our method of generating galaxy density maps. The
galaxy density maps are used as independent mass tracers in this
work to help confirm the signal measured in the weak lensing mass
maps.

2.1 Weak gravitational lensing

When light from galaxies passes through a foreground mass dis-
tribution, the resulting bending of light leads to the galaxy im-
ages being distorted (e.g. Bartelmann & Schneider 2001). This phe-
nomenon is called gravitational lensing. The mapping between the
source (b ) and lens (q ) plane coordinates can be described by the
lens equation:

b = A(q)q (1)

where A is the Jacobian of this mapping and is given by

A(q) = (1�k)
✓

1�µ1 �µ2
�µ2 1+µ1

◆
(2)

where k is the convergence, µi =
gi

1�k and gi is the shear. The pre-
multiplying factor (1� k) causes galaxy images to be dilated or
reduced in size, while the terms in the matrix cause distortion in
the image shapes.

Recall that the Friedmann-Robertson-Walker (FRW) metric
for a weakly perturbed Universe is given by

ds2 =

✓
1+

2F
c2

◆
dt2 �a(t)2

✓
1� 2F

c2

◆h
dr2 + r2dW2

i
(3)

where r is the comoving distance and F is the Newtonian poten-
tial. Under the Born approximation, we find that A is given by (e.g.
Bartelmann & Schneider 2001)

Ai j(q ,r) = di j �y,i j (4)

where the lensing deflection potential y,i j , or the projected gravi-
tational potential along the line of sight, for a flat Universe is

y (q ,r) = 2
c2

Z r

0
dr0

r
rr0

F
�
q ,r0

�
(5)

Comparison of Eqn. 4 with Eqn. 2 shows that

k =
1
2

—2y (6)

g = g1 + ig2 =
1
2
�
y,11 �y,22

�
+ iy,12 (7)

The Poisson equation for a density fluctuation d = D�D̄
D̄ is given by

—2F =
3H2

0 Wm

2a
d (8)

where D and D̄ are the density and average density when the Uni-
verse has a scale factor a. Using Eqn. 5 and Eqn. 6, we find that the
convergence measured at a sky coordinate q on sources at comov-
ing distance r can be written as

k(q ,r) =
3H2

0 Wm

2c2

Z r

0
dr0

(r� r0)r0

r
d (q ,r0)

a(r0)
(9)

Convergence for sources with a redshift distribution f (r) can be
written as

k(q) =
Z

k(q ,r) f (r)dr (10)

Using the Limber approximation, the angular power spectrum of
convergence can be written as

Ck (l) =
9H4

0 W2
m

4c4

Z
dr

p2(r)
a2(r)

Pd (l/r,r) (11)

where Pd (l/r,r) is the three dimensional matter power spectrum
and p(r) is the lensing efficiency defined

p(r) =
Z

dr0 f (r0)
r0 � r

r
. (12)

2.2 Mass maps from Kaiser-Squires reconstruction

In this paper we perform weak lensing mass reconstruction based
on the method developed in Kaiser & Squires (1993). The Kaiser-
Squires (KS) method is known to work well up to a constant factor
as long as the structures are in the linear regime (Van Waerbeke
et al. 2013), i.e. scales larger than clusters. In the non-linear regime
(scales corresponding to clusters or smaller structures) improved
methods have been developed to recover the mass distribution (e.g.
Bartelmann et al. 1996; Bridle et al. 1998). In this paper we are in-
terested in the connection between mass and light on large scales;
we have therefore found that the KS method is suitable for our pur-
pose. The principle of the KS method is described below.

The Fourier transform of the observed shear, ĝ , relates to the
Fourier transform of the convergence, k̂ through

k̂(l)�k0 = D⇤(l)ĝ(l) (13)

where li = 2p
qi

, i = 1,2, are the Fourier counterpart for the angular
position qi, and k0 is the average projected mass (i.e. k for l = 0).
D(l) is defined as

D(l) =
l2
1 � l2

2 +2il1l2
|l|2

. (14)

The inverse Fourier transform of Eqn. 13 gives the convergence
for the observed field in real space. Ideally, the imaginary part of
the inverse Fourier transform will be zero as the convergence is a
real quantity. However, noise, systematics and masking can intro-
duce imaginary convergence as we will see later. In this paper we
will refer to the the real and imaginary parts of the reconstructed

c� 0000 RAS, MNRAS 000, 000–000

Lensing potential

Convergence

Shear
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�
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where r is the comoving distance. Comparison of Eq. (3) with
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k =
1
2

—2y; (5)

� = g1 + ig2 =
1
2

(y,11 �y,22)+ iy,12. (6)

For the purpose of this paper, we use the Limber approxima-
tion which lets us use the Poisson equation for the density
fluctuation d = (D� D̄)/D̄ (where D and D̄ are the 3D density
and mean density respectively):
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2
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0
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r
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. (8)
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a(r0)
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with

p(r0) =
Z rH

r0
dr f (r)

r � r0

r
, (10)

where rH is the comoving distance to the horizon. For a spec-
ified cosmological model and f (r) specified by the redshift
distribution of source galaxies, the above equations provide
the basis for predicting the statistical properties of k .

B. Mass maps from Kaiser-Squires reconstruction

In this paper we perform weak lensing mass reconstruction
based on the method developed in Kaiser and Squires [41].
The Kaiser-Squires (KS) method is known to work well up
to a constant additive factor as long as the structures are in
the linear regime [33]. In the non-linear regime (scales cor-
responding to clusters or smaller structures) improved meth-
ods have been developed to recover the mass distribution [e.g.
42, 43]. In this paper we are interested in the mass distribution
on large scales; we can therefore restrict ourselves to the KS
method. The KS method works as follows. The Fourier trans-
form of the observed shear, �̂, relates to the Fourier transform
of the convergence, k̂ through

k̂` = D⇤
`�̂`, (11)

D` =
`2

1 � `2
2 +2i`1`2

|`|2 , (12)

where `i are the Fourier counterparts for the angular coordi-
nates qi, i = 1,2 represent the two dimensions of sky coor-
dinate. The above equations hold true for ` 6= 0. In practice
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construction method in Sec. II B. Finally in Sec. II C, we de-
scribe our method of generating galaxy density maps. The
galaxy density maps are used as independent mass tracers in
this work to help confirm the signal measured in the weak
lensing mass maps.

A. Weak gravitational lensing

When light from galaxies passes through a foreground mass
distribution, the resulting bending of light leads to the galaxy
images being distorted [e.g. 1]. This phenomenon is called
gravitational lensing. The local mapping between the source
(�) and image (✓) plane coordinates (aside from an overall
displacement) can be described by the lens equation:

���0 = A(✓)(✓�✓0), (1)

where �0 and ✓0 is the reference point in the source and the
image plane. A is the Jacobian of this mapping, given by
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where k is the convergence, gi = gi/(1 � k) is the reduced
shear and gi is the shear. i = 1,2 refers to the 2D coordinates
in the plane. The factor (1 � k) causes galaxy images to be
dilated or reduced in size, while the terms in the matrix cause
distortion in the image shapes. Under the Born approxima-
tion, which assumes that the deflection of the light rays due to
the lensing effect is small, A is given by [e.g. 1]

Ai j(✓,r) = di j �y,i j, (3)

where y is the lensing deflection potential, or a weighted pro-
jection of the gravitational potential along the line of sight.
For a spatially flat Universe, it is given by the line of sight
integral of the 3D gravitational potential F [40],
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For the purpose of this paper, we use the Limber approxima-
tion which lets us use the Poisson equation for the density
fluctuation d = (D� D̄)/D̄ (where D and D̄ are the 3D density
and mean density respectively):
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where a is the cosmological scale factor. Eq. (4) and Eq. (5)
give the convergence measured at a sky coordinate q from
sources at comoving distance r:
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We can generalize to sources with a distribution in comoving
distance (or redshift) f (r) as: k(✓) =

R
k(✓,r) f (r)dr. That

is, a k map constructed over a region on the sky gives us the
integrated mass density fluctuation in the foreground of the k
map weighted by the lensing weight p(r0), which is itself an
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where rH is the comoving distance to the horizon. For a spec-
ified cosmological model and f (r) specified by the redshift
distribution of source galaxies, the above equations provide
the basis for predicting the statistical properties of k .

B. Mass maps from Kaiser-Squires reconstruction

In this paper we perform weak lensing mass reconstruction
based on the method developed in Kaiser and Squires [41].
The Kaiser-Squires (KS) method is known to work well up
to a constant additive factor as long as the structures are in
the linear regime [33]. In the non-linear regime (scales cor-
responding to clusters or smaller structures) improved meth-
ods have been developed to recover the mass distribution [e.g.
42, 43]. In this paper we are interested in the mass distribution
on large scales; we can therefore restrict ourselves to the KS
method. The KS method works as follows. The Fourier trans-
form of the observed shear, �̂, relates to the Fourier transform
of the convergence, k̂ through
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where `i are the Fourier counterparts for the angular coordi-
nates qi, i = 1,2 represent the two dimensions of sky coor-
dinate. The above equations hold true for ` 6= 0. In practice
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Theory and observable:

Distortion (what we can measure)

Mass (what we care about)
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Analysis
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Radio Telescope Calibration

• Now we want to make another map, this is a map of non-dark 
hydrogen, but not in the visible wavelength —  we map in the 
radio wavelength (20~30 cm).

• Before doing that, we need to calibrate our telescope, i.e. 
understand how our instrument responses to the incoming signal. 
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• We want to measure accurately shapes of a lot of small, faint, noisy 
galaxies, and get useful information out of them.

The Computational Challenge

31
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• We want to measure accurately shapes of a lot of small, faint, noisy 
galaxies, and get useful information out of them.

The Computational Challenge
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a galaxy 
in space

observed

~100,000,000 x

lensing
instrument 

+ atmosphere noise

this is where the dark 
matter information is 
— a 1% effect!
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Mapping Dark Matter

Compare with distribution 

of visible mass.

Galaxy clusters: the most 
massive gravitationally bound 
systems in the Universe
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From Astrophysics to Cosmology

• Astrophysics is the branch of astronomy that employs the principles of 
physics and chemistry "to ascertain the nature of the heavenly bodies, rather 
than their positions or motions in space.” — Wikipedia

• Cosmology is the study of the origin, evolution, and eventual fate of the 
universe. — Wikipedia
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